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I. INTRODUCTION

A liquid foam is an assembly of gas bubbles bounded by
liquid films. The behavior of a foam with a low-viscosity
liquid phasese.g., an aqueous foam or a metal foam, as op-
posed to a polymeric foamd is dominated by surface tension.
Such foams thus serve as models for systems in which the
interfacial areafin three dimensionss3Ddg or the perimeter
fin two dimensionss2Ddg is minimized at equilibrium. Be-
sides this fundamental usefulness, foams have many impor-
tant practical applications, which include food and bever-
ages, toiletries, cleaning products, fire fighting, oil recovery,
mixture fractionation, the manufacture of cellular materials,
and ore purification by flotationf1g.

The theoretical analysis of foams usually starts from the
model of a dry, or mathematical, foam. This consists of films
of zero thicknessswhich can be regarded as mathematical
surfacesd, endowed with a contractile tendency that is de-
scribed by a film tension, denotedg sa free energy per unit
length of a 2D film, or per unit area of a 3D filmd. Films join
along edges and at vertices, in such a way that the resulting
cells sbubblesd fill a region of 2D or 3D space without any
gaps.

At equilibrium, a fully dry foam satisfies Plateau’s laws
f2g: films of constant mean curvature meet at 2p /3 angles at
triple lines, and different pressures in the bubbles equilibrate
the contractile forces on the films. The energy of such a foam
is just the energy of its films. In actual fairly dry foams
sliquid content below about 5%d, we may still neglect the
film thickness, but the triple lines are “decorated” with re-
gions called Plateau borderssPBsd, where most of the liquid
resides. How the wetness of real physical foams modifies
their geometry and energy has been a subject of interest in
the past few years. The properties of 2D PBs, including their
snegatived excess energy relative to the dry film junctions,
have been discussed by Krotov and Rusanovf3g and by
Srinivasanet al. f4g for equilateral triangular PBs, and by
ourselves for general three- and four-sided PBsf5g. The
mathematical modeling of triple junctions has been surveyed
by Taylor f6g. The effect of PBs on the energy and shear
modulus of 3D foams in the dry limit has been analyzed by
Kern and Weairef7g. Very recently, a deviation from 2p /3 of
the angles between films meeting at a PB was experimentally

found by Géminardet al. f8g, who interpreted their result in
terms of asnegatived line tension associated with the PB. A
similar deviation from the dry foam equilibrium angles was
reported by Rodrigueset al. f9g for a smallsmillimeter-sizedd
hemispherical bubble on a plate, which was also explained
with resort to a line tension associated with the PB at the
plate-film junction. Likewise, Srinivasanet al.’sf4g atomistic
simulation of grain boundaries yielded a negative excess en-
ergy of a trijunction.

Here we expand on the above works by investigating how
the geometry of a wet 3D foam differs from that of a dry 3D
foam, and in particular how a wet 3D foam can be mimicked
by an “equivalent” dry 3D foam endowed with a line tension.
This is useful because many rigorous and quasirigorous re-
sults are known that apply only to dry foams. We choose to
concentrate on two simple 3D bubble clusters, as their
shapes can be calculated numerically to great accuracy. We
are thus able to show that deviations from the dry foam equi-
librium angles occur as a consequence of PBs or bubbles
decorating the three-film junctions. Furthermore, we relate
the line tension to the excess energy of these decorations.

This paper is organized as follows: in Sec. II we review
the properties of PBs in 2D foams. In Sec. III we consider
the decoration of the contact line of a 3D double bubble by
either a third, toroidal bubble, or a liquid PB; as well as the
decoration by an extra bubble or a PB of the contact line
around a lens bubble. We integrate Laplace’s equation to get
the shape of the decorations. In Sec. IV we define and com-
pute the excess energy per unit lengthe associated with the
decorated double bubble and lens bubble of the preceding
section, and compare them with those of the corresponding
2D decorations. In Sec. V we perform a direct minimization
sat constant volumed of the energy of an undecorated double
bubble and of a lens bubble with triple-line tensiont, and
show that it leads to the same results as balancing the film
and triple-line tensions. Finally, in Sec. VI we check that our
numerical calculation satisfies the relationship betweene and
t obtained earlier by Géminard and co-workersf8g: the line
tension required to reproduce the calculated angles between
film prolongations is half the decoration excess energy; i.e.,
t=e /2. Our results are summarized and discussed in
Sec. VII.
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II. PLATEAU BORDERS IN TWO-DIMENSIONAL FOAMS
AND THE DECORATION THEOREM

In fairly dry 2D foams, PBs are three-sidedsi.e., triangu-
lard regions connected by films of negligible thickness. They
satisfy an important result known as thedecoration theorem
f10,11g: if the three circular films connected to the PB verti-
ces are prolonged into the PB, then at equilibrium they in-
tersect at a single point, at 2p /3 angles. Conversely, a three-
fold vertex can be decorated with a triangular PBsin fact, an
infinite family of triangular PBsd at equilibrium without dis-
turbing the films salthough the bubble areas obviously
changed.

For 2D triangular PBs we can then define an excess en-
ergy e3 as the difference between the energy of the PB sur-
facessof tensiongL, equal to that of the free surface of the
bulk liquidd and that of the film prolongationssof tensiongd
f5g. sIt should be noted thatgL andg are here understood to
be energiesper unit length.d In a separate paperf5g we stud-
ied the properties of these PBs in the case wherein their
surfaces meet the films tangentially; i.e., forgL=g /2. It was
found that thesnegatived excess energye3 is approximately
related to the PB areaA3 by

e3

g
= − FS−

p

2
+ Î3DA3G1/2

. − 0.402A3
1/2, s1d

which holds exactly forregular three-sided PBs. Alterna-
tively, a threefold vertex in a 2D dry foam can be decorated
with an additional bubble, of film tensiong; an associated
excess energy can then be defined as for a decoration PB. If
such a bubble is regularsi.e., equilaterald and has areaAD, its
spositived excess energy is

eD

g
= f2sp − Î3dADg1/2 . 1.679AD

1/2. s2d

At high liquid fractions, a 2D foam contains PBs with
more than three sides, to which the decoration theorem does
not in general apply. One cannot then define an excess free
energy as for three-sided PBs. In 3D foams, the decoration
theorem in general does not hold, in the sense that, as we
shall show, film prolongations do not meet at the equilibrium
angles. Indeed, it is not even known whether film prolonga-
tions sassuming that they can be unambiguously definedd
meet along a single line. Conversely, a general triple film
junction cannot be decorated without disturbing the film ge-
ometry. Exceptions are the two 3D bubble clusters discussed
in the next sections: the double bubble and the lens bubble,
in which all films are spherical or planar. We will, however,
show that, even in these cases where the film prolongations
do meet along a single line, they do not do so at the equilib-
rium 2p /3 angles as in 2D.

III. TRIPLE-LINE DECORATION OF A DOUBLE BUBBLE
AND OF A LENS BUBBLE

Figures 1 and 2 show a double bubble and a lens bubble,
respectively. In their fully dry equilibrium states, each com-
prises two spherical films and a flat film, and has axial sym-
metry. At equilibrium, the three films meet at 2p /3 angles

along a circular triple line, as follows from equilibrium of the
film tensionsg. The triple line decoration is a toroidal region
bounded by three surfaces of tensiongD, which equalsg in
the case of a decoration bubble, org /2 in the case of a
decoration PB. In either decorated cluster, each of the films
meets two of the surfaces bounding the decoration along a
circle; there are thus three such circles.

In what follows we first describe in detail the calculations
performed for the double bubble and then indicate how the
same can be straightforwardly adapted to deal with the lens
bubble. The films remain spherical after decoration; indeed,
the equilibrium conditions are satisfied with spherical films.

In the double bubble, the films and the bounding surfaces
of the decoration are surfaces of revolution around the axis
of symmetryfsee Figs. 1sad and 1sbdg, which we take as the
z-axis: it is perpendicular to the planar film 0 and has its
origin at this film’s center. These surfaces all have constant
mean curvatures: 1/R for the films andb1 and b2 for the
decoration surfaces, where subscript 1 refers to the two iden-
tical surfacessbetween the decoration and either bubbled and
subscript 2 refers to the remaining surfacesbetween the
decoration and the outside gasd ssee Fig. 1d. Each decoration
surface has equationx;xszd, wherex is the distance to the
z-axis; it is a solution of the Laplace equation for axially
symmetric interfaces:

s1 + ẋ2d−3/2S− ẍ +
1 + ẋ2

x
D =

Dpi

g
= 2bi , s3d

where the dots denote differentiation with respect toz and
Dpi is the pressure difference across surfacei, positive if the
pressure is higher on the side of thez-axis. For a Plateau
border,b1.0 andb2 can have either sign; for a decoration
bubble,b1,0 andb2.0.

Let p0, pD, andpB be the pressures of the outside gas, in
the decoration, and in the twin bubbles, respectively. Equi-
librium of pressures requires that

pB − pD = 2gDb1, s4d

pD − p0 = 2gDb2, s5d

pB − p0 =
2g

R
, s6d

whence

b1 + b2 =
g

gD

1

R
. s7d

In addition to equilibrium of pressures, there must be equi-
librium of the decoration surface and film tensions,gD and
g, respectively, at the decoration triple lines. At the 011 triple
line si.e., where films 0, 1, and 1 meetd this implies that

cosa1 =
g

2gD
, s8d

wherea1 is the angle between films 0 and 1fsee Fig. 1scdg:
equilibrium thus requiresgDùg /2. At the 0812 triple junc-
tions,g must bisect the angle between the twogD. Introduc-
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ing u, the angle betweeng at this triple line and thex-axis
fagain, see Fig. 1scdg, we must have

a18 + a28 = 2u, s9d

wherea18 and a28 are the angles between surfaces 1 and 2,
respectively, and thex-axis at this triple line. Equilibrium of
tensions at the 0812 triple line further requires that

cossu − a18d =
g

2gD
. s10d

If we now define an anglel s0øløp /2d such that

cosl =
g

2gD
, s11d

then the equilibrium conditions for the surface tensionsfEqs.
s8d–s10dg can be expressed more concisely as

a1 = l, s12d

a28 − a18 = 2l, s13d

u − a18 = l. s14d

In order to integrate Eq.s3d, we introduce the arc lengths
alongxszd from a chosen origin. Equations3d for xszd is then

FIG. 1. The decorated double bubble.sad With a decoration bubble.sbd With a decoration PB.scd Geometrical quantities pertaining to the
decoration.sdd Boundary conditions for integration of Eqs.s15d–s17d. sed Geometrical quantities for calculating the angle between prolon-
gations and the surface energy of the decoration: the prolongations intersect ats0,xId. sfd The undecorated double bubble with aspositived
triple-line tensiont.
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equivalent to the following set of first-order differential
equations:

dx

ds
= cosa, s15d

dz

ds
= sina, s16d

da

ds
= 2bi −

sina

x
, s17d

wherea s0øaøpd is the angle between the tangent to the
x=xszd curve and the positivex-axis fsee inset in Fig. 1scdg:
tana=dz/dx.

For a givenl fi.e., a giveng /gD ratio, see Eq.s11dg, and
once the boundary condition has been setse.g., by fixing
x0=1d, Eqs.s15d–s17d define a one-parameter family of so-
lutions for the decoration surfaces. We chooseb1 as the pa-
rameter and start by integrating Eqs.s15d–s17d for decoration
surface 1, starting atx=x0=1, z=0, a=a1 ffrom Eq.s8dg, up
to a tentativex=x1, z=z1, a=a18. For thisx1, we then finda28
from Eq.s13d andu from Eq.s14d. Usingx1 andu, the radius
R of the spherical films can be calculated fromfsee Fig. 1sedg

R=
x1

sinu
, s18d

andb2 from Eq.s7d. With thisb2 we integrate Eqs.s15d–s17d
for decoration surface 2, with initial conditionsx=x1, z=z1,
a=a28. The resulting profile must reacha=p /2 for z=0. This
will happenonly for a particularx1 that has to be found by
trial and error. Figure 3 shows examples of calculated deco-
rations of a double bubble forgD=g sdecoration bubbled and
gD=g /2 sPlateau borderd, for differentb1. In the former case
the decoration surfaces meet the films at 2p /3 angles,
whereas in the latter they do so tangentially. The correspond-
ing geometrical parameters are collected in Tables I and II.
All lengths are in units ofx0, the radius of the planar film 0
swhich equals the radius of the 011 triple lined.

The prolongations of the planar and spherical films,P and
P8, respectivelyfdashed in Figs. 1sad, 1sbd, and 1scdg, meet at
a geometrical line—a circle of radiusxI. As pointed out
above, this is a special situation: in general, it is uncertain
whether the prolongations of these surfaces of constant mean
curvature into a decoration will all intersect at a single line.

The anglef between the prolongations of the two spheri-
cal films 08 fsee Fig. 1sedg can be obtained from

z1 = RScos
f

2
− cosuD . s19d

For each solution, we also found the radiusxI of the line
where the film prolongations intersect:

FIG. 2. Decorated lens bubble on a flat film.sad Definition of
key quantities.sbd The undecorated lens bubble with asnegatived
triple-line tensiont.

FIG. 3. Calculated shapes ofsad decoration bubbles andsbd PBs
around a double bubble oriented as in Fig. 1, forb1 as givenssee
also Tables I and IId. The origin of coordinates is at the center of the
planar interbubble film.
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xI = Rsin
f

2
, s20d

as well as the areaAD of the decoration cross section, which
is given by

AD = 2SE
x0

x1

z dx+E
x1

x2

z dxD . s21d

fNote that the second integral in the above equation is posi-
tive in the case of a decoration bubblesx2.x1d and negative
in the case of a PBsx2,x1d. The factor 2 comes from the
fact that because of symmetry we only actually calculate half
the decoration.g AD

1/2/xI is a measure of the size of the deco-
ration relative to that of the bubblessin the case of a PB, it is
a measure of the liquid fractiond. In Fig. 4 we plot the de-
viation Df of f in a double bubble from its value in the
absence of a decoration, 2p /3, vsAD

1/2/xI. It is negativesand
largerd for decoration bubbles, and positivesand smallerd for
PBs.

Similar results are obtained for the lens bubble, to which
Eq. s7d for the equilibrium of pressures still applies. In this
equation,b1 and b2 are thesconstantd mean curvatures of
decoration surfaces 1 and 2, respectivelyfsee Figs. 1sad and
2sadg, andR s.0d is the radius of the spherical films making
up the bubble. As in the case of the double bubble, films 08
and the decoration surfaces are surfaces of revolution around
the axis of symmetryfsee Fig. 2sadg, which we again take as
the z-axis: it is perpendicular to the planar film 0 and has its
origin at the center of the circular hole in this film, which is
occupied by the lens bubble. Notice that the roles of surfaces
1 and 2 are reversed: now subscript 1 refers to the two iden-
tical surfacessbetween the decoration and the outside gasd
and subscript 2 refers to the remaining surfacesbetween the
decoration and the bubbled. Figure 5 shows the calculated

shape of the decoration bubble and PB around a lens bubble;
the geometrical parameters pertaining to these curves are col-
lected in Tables III and IV, respectively. In Fig. 6 we plot the
deviationDf of f, the angle between the two spherical films
fsee Fig. 2sbdg, from its value in the absence of a decoration,
2p /3, vs AD

1/2/xI. Note thatDf has opposite signs for the
double and lens bubbles. Experimentally,Df for the PB
decorating the triple line of a flat circular film suspended by
two catenoidal films can be as large as 2.5°f8g, giving
f /p−2/3,0.014; this is of the order of what we predict
fsee Figs. 4sbd and 6g.

IV. EXCESS ENERGY OF DECORATION: DEFINITION
AND DERIVATION

We next proceed to calculate the excess energy of a deco-
ration, defined as the excess surface energysper unit length

TABLE I. Geometrical parameters pertaining to the double
bubble with decoration bubble of Fig. 3sad: gD /g=1, x0=1.0. We
fix b1.

b1 b2 x1 x2 xI R

−10.0 10.8345 1.042 1.0487 1.0279 1.1983

−5.0 5.8055 1.082 1.0950 1.0541 1.2420

−2.0 2.7303 1.194 1.2239 1.1259 1.3693

−1.0 1.6412 1.360 1.4136 1.2300 1.5597

TABLE II. Geometrical parameters pertaining to the dubble
bubble with decoration PB of Fig. 3sbd: gD /g=0.5,x0=1.0. We fix
b1.

b1 b2 x1 x2 xI R

10.0 −8.3142 1.045 1.0382 1.0300 1.1864

5.0 −3.3548 1.094 1.0809 1.0620 1.2156

2.0 −0.5115 1.262 1.2283 1.1743 1.3437

1.0 0.2332 1.615 1.5884 1.4314 1.6218

FIG. 4. Deviation off, the angle between spherical film pro-
longations into the decoration of a double bubble, from its value in
the absence of a decoration, 2p /3, vs decoration sizeAD

1/2/xI, for sad
decoration bubbles andsbd PBs. The solid lines are linear fits going
through the origin; slopes are given in each case.
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of the line of radiusxId of the decoration relative to the
surface energy of the film prolongations. A detailed deriva-
tion is presented for the double bubble. The total area of the
decoration surfaces is 2sS1+S2d, whereS1 is the area of each
of decoration surfaces 1 andS2 is half the area of decoration
surface 2fsee Fig. 1sddg:

Si = 2pE
0

z1

xÎ1 +Sdxi

dz
D2

dz, si = 1,2d. s22d

The prolongationP of the planar interbubble film is a circu-
lar “crown” fi.e., the region between the two concentric
circles of radiixI, given by Eq.s20d, andx0g of area

SP = pSR2 sin2f

2
− x0

2D . s23d

Finally, each spherical film prolongationP8 is a slice of
heightz1 of a sphere of radiusR; its area is 2pRz1 or, using
Eq. s19d,

SP8 = 2pR2Scos
f

2
− cosuD . s24d

e, the excess energy per unit length of the decoration of total
length 2pxI, is thus

e

g
=

1

2pxI
F2gD

g
sS1 + S2d − sSP + 2SP8dG . s25d

In Fig. 7 we plot the dimensionless quantitye / sgxId versus
AD

1/2/xI for the double bubble decorated with a bubblefFig.
7sadg or a PB fFig. 7sbdg of cross-sectional areaAD. As for
2D decorations, the excess energy of a decoration bubble is
positive, whereas that of a PB is negative. Fitting straight
lines through the origin to the data in Figs. 7sad and 7sbd
gives

e

g
= 1.693AD

1/2, sdecoration bubbled, s26d

e

g
= − 0.393AD

1/2, sPBd, s27d

whose prefactors closely approximate those for 2D foams
fsee Eqs.s1d and s2dg. For a lens bubble we likewise have,
from Fig. 8,

e

g
= 1.595AD

1/2, sdecoration bubbled, s28d

TABLE III. Geometrical parameters pertaining to the lens
bubble with decoration bubble of Fig. 5sad: gD /g=1, x0=1.0. Note
that now we fixb2.

b2 b1 x1 x2 xI R

−10.0 10.8586 1.0063 1.0472 1.0197 1.1647

−5.0 5.8510 1.0118 1.0893 1.0370 1.1751

−2.0 2.8343 1.0251 1.1929 1.0780 1.1986

−1.0 1.8154 1.0401 1.3148 1.1239 1.2264

TABLE IV. Geometrical parameters pertaining to the lens
bubble with decoration PB of Fig. 5sbd: gD /g=0.5, x0=1.0. Note
that now we fixb2.

b2 b1 x1 x2 xI R

10.0 −8.2841 0.9922 1.0383 1.0087 1.1655

5.0 −3.3072 0.9813 1.0943 1.0199 1.1815

3.0 −1.3465 0.9593 1.1980 1.0408 1.2304

2.0 −0.4277 0.9076 1.5152 1.0859 1.2721

FIG. 5. Calculated shapes ofsad decoration bubbles andsbd PBs
around a lens bubble oriented as in Fig. 2, forb2 as givenssee also
Tables III and IVd. The origin of coordinates is at the center of the
lens bubble.
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e

g
= − 0.386AD

1/2, sPBd, s29d

whose agreement with the 2D result is somewhat less good
than for the double bubble. Note that Eqs.s26d–s29d hold
even for decorations whose linear size is of the order of the
triple-line radiusxI.

V. DIRECT MINIMIZATION OF THE SURFACE ENERGY
OF A DOUBLE BUBBLE WITH TRIPLE-LINE

TENSION

We assign a line tensiont to the triple linesof radiusxId
of a dry si.e., undecoratedd double bubble or lens bubble.
This is defined as the contribution of the decoration to the
total energy of a unit length of triple line in theundecorated
cluster. The energyE of thedecorateddouble bubble or lens

bubble is then the sum of the surface energygS of the dry
films meeting at the triple line of lengthL, plus the energytL
of that triple line:

E = gS+ tL. s30d

We shall relatet to e in the next section. In the case of a
double bubble,S comprises the areas of the two spherical
films of radiusR and subtended angle 2u8=2p−f, and that
of the circular planar film of radiusxI =Rsinu8 fcf. Eq. s20d,
see Fig. 1sedg:

E

g
= pR2s5 − 4 cosu8 − cos2 u8d + 2pRsinu8

t

g
. s31d

The volume of each bubble is

FIG. 6. Deviation off, the angle between film prolongations
into the decoration of a lens bubble, from its value in the absence of
a decoration, 2p /3, vs decoration sizeAD

1/2/xI, for sad decoration
bubbles andsbd PBs. The solid lines are linear fits going through the
origin; slopes are given in each case.

FIG. 7. Dimensionless excess energye / sgxId of a double bubble
vs AD

1/2/xI for sad decoration bubble andsbd PB. The solid lines are
linear fits going through the origin; slopes are given in each case.

TRIPLE-LINE DECORATION AND LINE TENSION IN… PHYSICAL REVIEW E 71, 051404s2005d

051404-7



V =
pR3

3
s2 − 3 cosu8 + cos3 u8d. s32d

Minimizing E at fixedV yields

− sin u8s1 + 2 cosu8d =
t

gR
. s33d

The equilibrium conditions33d can be derived directly
from balancing theg andtn̂ /xI forces acting on thesundeco-
ratedd triple line, wheren̂ is the principal normal to thescir-
culard triple line, pointing toward its center. The line tension
force acts to contract the triple line if positive, and to dilate it
if negative. From Fig. 1sfd we get

S2 cos
f

2
− 1Dg =

t

xI
, s34d

which is identical with Eq.s33d sinceu8=p−f /2. Either of
these equations definesf as a function oft / sgxId; for small
t / sgxId, this is

f −
2p

3
= −

2
Î3

t

gxI
. s35d

Similar considerations apply to the lens bubble, for which
Eq. s34d is replaced by

S2 cos
f

2
− 1Dg = −

t

xI
, s36d

wheref is defined in Fig. 2sbd.

FIG. 8. Dimensionless excess energye / sgxId of a lens bubble vs
AD

1/2/xI for sad decoration bubble andsbd PB. The solid lines are
linear fits going through the origin; slopes are given in each case.

FIG. 9. Deviation off, the angle between film prolongations
into the decoration of a double bubble, from its value in the the
absence of a decoration, 2p /3, vs dimensionless excess energy
e / sgxId, for sad decoration bubbles andsbd PBs. The solid lines are
the analytical result fort / sgxId, Eq. s34d, with t=e /2.
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VI. EXCESS ENERGY AND LINE TENSION

In a recent paper, Géminard and co-workersf8g obtained a
relation betweene andt:

t =
e

2
. s37d

Recall thate is the difference between the energy of the
actual decorated cluster and that of an undecorated reference
cluster with the same radiusR of the spherical films and the
same radiusxI of the triple line, to which we may assign a
line tensiont. To derive this, start by noting thate~AD

1/2,
where AD is the PB cross-sectional area. Now consider a
length l of PB: it has energyle. The line tension is, by defi-
nition,

t =
dsled

dl
, s38d

i.e., the worktdl performed by the line tension force equals
the change in PB energy,dsled. The lengthl of PB has vol-
umelAD, which from Eq.s1d is proportional tole2. If the PB
volume is kept constant, thene~ l−1/2 and Eq.s37d follows
from Eq. s38d.

In our theory, the functional dependence of the excess
energye of decorated double or lens bubbles on the cross-
sectional area of their decorations is given by Eqs.s26d–s29d.
Moreover, the film prolongations into the decorations in ei-
ther cluster meet at a single line at an anglef that deviates
from 2p /3. Our numerical calculations yieldssee Figs. 9 and
10d

2 cos
f

2
− 1 <

2
Î3

Sf −
2p

3
D <

1

2

e

gxI
, s39d

which combined with Eq.s36d recovers Eq.s37d.

VII. CONCLUDING REMARKS

We have discussed two 3D bubble clusters—the double
bubble and the lens bubble—which contain a single, closed,
triple line. This line can be decorated with a PB of triangular
cross section or, alternatively, with a tubular bubble, in such
a way that the prolongations of the two spherical films and of
the planar film meet at a single linesa circled, albeit not in
general at the equilibrium 2p /3 angles as in 2D. Still, this is
the 3D equivalent of the decoration property of triangular
PBs in 2D, and it allows one to define an excess energy per
unit length of the triple linee as the difference between the
energy of the decoration surfaces and that of the film prolon-
gations. The decorated cluster shapes and energies have been
found by numerical integration of Laplace’s equation.

The deviation of the angles from their equilibrium values
in a dry foam can be accounted for by introducing a line
tensiont associated with the triple line of the undecorated
bubble and requiring that the film tension forcesg, and that
due to the line tension,st /rdn̂, balance at the triple line. We
have numerically verified that this line tension equals half
the excess energy per unit length associated with the decora-
tion, as follows from the work of Géminardet al. f8g.

The excess energye is a function of the cross-sectional
area of the decoration,AD. For both bubble and PB decora-
tions, the ratioe / sgAD

1/2d is approximately the same for both
double and lens bubbles and close to the values for the cor-
responding 2D decorations.

The two 3D clusters studied are special in that a decora-
tion excess energy can be defined in the same manner as for
2D clusters with triangular PBs. Generalization to arbitrary
3D triple junctions is, however, not straightforward. In par-
ticular, it is not even known whether the film prolongations
into a 3D decoration, if they can be unambiguously defined,
always meet at a single line; this could be investigated using,
e.g., the Surface Evolver programf12g. Still, for the purpose
of estimating the energy of a 3D wet foam with PBs of
triangular cross-section, we may make use of an excess en-
ergy e, related to the PB cross-sectional area bye /g
.−0.4AD

1/2.

FIG. 10. Deviation off, the angle between film prolongations
into the decoration of a lens bubble, from its value in the the ab-
sence of a decoration, 2p /3, vs dimensionless excess energy
e / sgxId, for sad decoration bubbles andsbd PBs. The solid lines are
the analytical result fort / sgxId, Eq. s36d, with t=e /2.
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